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Today'’s topics

Reminder: calibration and stereo
2-view Structure from Motion (SfM)

Multi-view SfM
« Large-scale SfM

visual SLAM



Direct Sparse Odometry

https://www.youtube.com/watch?v=C6-xwS0O0Od



https://www.youtube.com/watch?v=C6-xwSOOdqQ

Recap: Calibration and Stereo

Camera calibration

image plane

X

> 2
principal axis

N

center

¢ Stereo

image 1 image 2

X =MX

known estimate known

Solve Perspective
n-Points (PnP) problem

xX=MX

known known estimate

Solve Triangulation problem




Reconstruction (EBiEak)

Structure Motion

Measurements
(scene geometry) | (camera geometry)

. . . 3D to 2D
Pose Estimation known estimate correspondences
. . . 2D to 2D

Triangulation estimate known correspondences
. ; . 2D to 2D
Reconstruction estimate estimate 0

correspondences




How do you reconstruct?

We don’t know both scene geometry and camera geometry
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Reconstruction Problem

 Problems so far

Camera calibration Triangulation (Stereo)
xX=MX xX=MX
known estimate known known known estimate

« Can we jointly estimate M and X ?

X =MX

known estimate estimate



2-view SfM

Structure from Motion
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Two-view SfM

1. Compute the Fundamental Matrix F from
points correspondences

8-point algorithm

p"'Fp =0

Estimate F from matched pairs

Image feature matching



Good feature point

* Mini-report:2
— Which is the good feature point to find
corresponding point uniquely? What is the reason?
(1) corner
(2) edge
(3) flat
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Good feature point

(1) corner

v’ easy to find
(2) edge

v difficult due to aperture problem (ZERi&E)
(3) flat

v' difficult because no clues

19



Aperture problem (EfE]=E)

 Human eyes interpret conveniently.

« Corresponding point cannot be
uniquely determined.

barber-pole illusion
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Interest operators

« Corner detectors to find small areas which are
suitable as feature points
— Moravec corner detector (1980)
— Harris corner detector (1988)
— KLT(Kanade-Locus-Tomasi) corner detector(1991)

« Check whether small area contains edges in
multiple directions

—Good feature point

Bad feature points: corresponding point cannot be determined uniquely.



Harris corner detector

« Principal component analysis of gradient in small area

« Classification by Eigenvalues 1;and 4,

1. X andY direction differentiation
X =0I/0x Y =0I/dy
2. Calculation of variance and covariance
A=X’®w B=Y?’®@w C=XY)®w
W,y = exp — (u® + v%)/26>
3. Eigenvalues of the variance-covariance matrix

M=['zl, g] A1, A

Principal component analysis
of image gradient




Harris corner detector

. Eigenvalue based classification
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Image feature descriptor
- SIFT -

« Features that are invariant to changes in scale and rotation of
the image

« Intensity gradient histogram

— Rotate coordinate axis in gradient direction (invariant to rotational
change)

— Normalize the vector sum (to reduce the influence of lighting changes)

Detect peak position
(gradient direction)
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Image gradient Angle histogram




Image feature descriptor
- SIFT -

« Accumulate while overlapping gradient information around
key points with Gaussian function

« Histogram in 8 directions every 4 x 4 = 16 blocks
— 128 dimensional feature vector

Gradient direction
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Two-view SfM

1. Compute the Fundamental Matrix F from
points correspondences

8-point algorithm

p"'Fp =0

Estimate F from matched pairs

Image feature matching



RANSAC

(RANdom SAmpling Consensus)

Eliminating outliers (4M1i&).

line fitting example

1. Randomly sample two points

from given points

3. Repeat 1 and 2 for given number

of iterations.

2. Count inliers for the line that passes

selected two points.

4. Select the line that maximize

the number of inliers.
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8-point algorithm

« Randomly sampled 8 points

Do the remaining points agree?
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Two-view StM

1. Compute the Fundamental Matrix F from
points correspondences

8-point algorithm

) Compute the camera matrices M from the
Fundamental matrix

M = [1|10] and M’ = |[e,]F|e']




Estimation of camera pose
from pairs of feature points

epipolar plane N\

epipolar
lines

Even if we do not know 3D
positions of feature points, we can
estimate camera’s rotation R and
translation direction t by epipolar
constraint from  multiple 2D
positions of corresponding feature
pairs.

M = [I1]0] and M’ = [[e,]F|e']

It should be noted that, we cannot recover the scale of t (actual
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Unknown real size

Miniature effect
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Front/back ambiguity

« Find the configuration where the
points is in front of both cameras

(b)

(c) d)
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Two-view StM

. Compute the Fundamental Matrix F from
points correspondences

8-point algorithm

. Compute the camera matrices M from the
Fundamental matrix

M = [1|10] and M’ = |[e,]F|e']

. For each point correspondence, compute the point X in

3D space
Triangulate with x = MX and x' = M'X




Structure from motion ambiguity

e If we scale the entire scene by some factor
k and, at the same time, scale the camera
matrices by the factor of 1/k, the
projections of the scene points in the image
remain exactly the same:

x=MX = (% M) (kX)

It is Impossible to recover the absolute scale of the scene!



Structure from motion ambiguity

e If we scale the entire scene by some factor
k and, at the same time, scale the camera
matrices by the factor of 1/k, the
projections of the scene points in the image
remain exactly the same

e More generally: if we transform the scene

using a transformation Q and apply the
inverse transformation to the camera
matrices, then the images do not change

x=MX = (MQ1)(QX)



Reconstruction ambiguity

Calibrated cameras Uncalibrated cameras
(similarity projection ambiguity) (projective projection ambiguity)

\g/ \ g/
\-r:} .'>.
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Multi-view SfM



Projective structure from motion

e Given: m images of n fixed 3D points
¢ xi]- = Min, I = (1,...,m,)j = (1,,7’1,)

e Problem: estimate m projection matrices M; and
n 3D points X; from the mn correspondences x;;




Sequential StM

Multi-view, ordered images
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Initialization
e [nitialize by 2-view SfM

. Compute the Fundamental Matrix F from
points correspondences

8-point algorithm

. Compute the camera matrices M from the
Fundamental matrix

M = [1|10] and M’ = |[e,]F|e']

. For each point correspondence, compute the point X in

3D space
Triangulate with x = MX and x' = M'X




Idea for sequential SfM

V...¥ € 4

Image 1 Image 2

If we know camera poses for a pair of image 1 and 2, we can continue to
estimate camera poses and 3-D structure for new input by repeating

‘mapping’” and ‘localization’. .



Problem of accumulative errors
by chaining relative poses

1% scale error

1% scale error 1% scale erro

1 _/_,,,,--—f"""/I‘r’nage 100

mage 3 Image 4

Image mage 2

If relative camera poses are estimated with +1%
biased scale error for each pair, the scale error at

100 frame will be 1.01190 = 2,70 = 270%.

*This kind of effect is called as scale drift. y



Bundle adjustment

e Non-linear method for refining structure and motion
e Minimizing reprojection error

E(M,X) = i zn: D(xij:Min)z

i=1j=1

Xj

% - \+ &\q\




Large-scale SfM

Multi-view, non-ordered images
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Photo Tourism




Feature detection

Detect features using SIFT [Lowe, 1JCV 2004]




Feature description

Describe features using SIFT [Lowe, 1JCV 2004]




Feature matching

Refine matching using RANSAC to estimate fundamental
matrix between each pair




Incremental structure from motion



Final reconstruction
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visual SLAM

Simultaneous Localization and Mapping
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Relationship between SfM and v-SLAM

Offline, high accuracy

N

Real-time, successive output

I L [ S

Input
Real-time
Output

Available information for
estimation

Recovery from failure

Feature tracking

Accumulation of errors

Images (non-ordered is OK)
Not necessary

Batch

All frames

Easier

Not easy (for non-
successive image input)

Smaller

Video
Required
Successive

Data acquired before the
target frame

Not easy

Easier

Bigger / Faster
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Idea for sequential SfM

V...¥ € 4

Image 1 Image 2

If we know camera poses for a pair of image 1 and 2, we can continue to
estimate camera poses and 3-D structure for new input by repeating

‘mapping’” and ‘localization’. o



Basic pipeline of sequential visual
SLAM

Camera pose initialization by Two-view SfM

Iterative process ?

Feature point tracking

\ 4

Camera pose estimation

Estimation of 3D points

A 4

Addition and deletion of feature points

I
| (option) Local / Global bundle adjustment




Parallel Tracking and Mapping

Local bundle adjustment is asynchronously processed for
minimizing accumulation of errors using selected key-
frames in order not to prevent real-time processing.

/ Tracking thread

Initialization by two-view SfM

RYa

Feature point tracking

Mapping thread

N

|_

Camera pose estimation

Selection of key-frames

Bundle adjustment for

selected key-frames
+

Addition of map points

‘@ +

A

P




Reduction of accumulation errors /

re-start from tracking failure
Loop closing, re-localization

Estimated camera pat

* N

True camera path

o
7—@\ =
R — A

P ]
| L2
Lo =
-

Basic flow
1. Find similar image of current input from already observed images
2. Find corresponding points between current and selected images.

3. Optimize data using bundle adjustment / Estimate camera pose.
64



LSD-SLAM: Large Scale Direct
Monocular SLAM

LSD-SLAM: Large-Scale Direct Monocular SLAM

Jakob Engel, Thomas Schops, Daniel Cremers
ECCV 2014, Zurich

Computer Vision Group
Department of Computer Science
Technical University of Munich

https://www.youtube.com/watch?v=GnuQzP3gty4




Final report

« Explain the reason of these strange views




Inconsistent?

« Physically consistent
x=MX

« Humans interpret conveniently.
— 90 degree, rectangle, parallel,...

x=MQ 10X

— Estimation of skewed shape

QX
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