No.2 カメラ校正

Camera Calibration

担当教員:向川康博·田中賢一郎

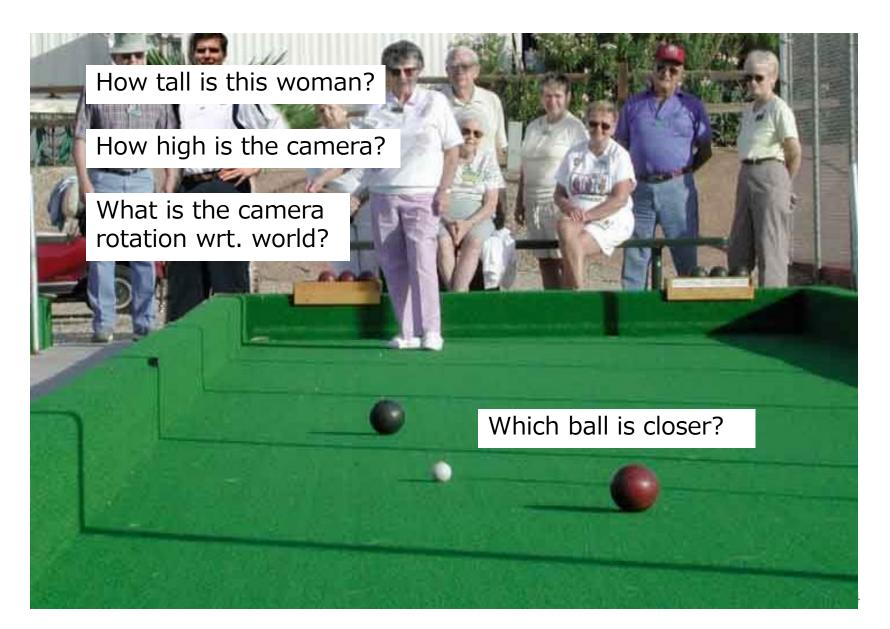
Slide credits

- Special Thanks: Some slides are adopted from other instructors' slides.
 - Tomokazu Sato, former NAIST CV1 class
 - James Tompkin, Brown CSCI 1430 Fall 2017
 - Ioannis Gkioulekas, CMU 16-385 Spring 2018
 - We also thank many other instructors for sharing their slides.

Today's mini-report

- There are 10 questions throughout the class.
 - Write your idea.
 - Correct answer is not important, but thinking your own idea is the most important.
 - The answer will be shown immediately.

Cameras and World Geometry

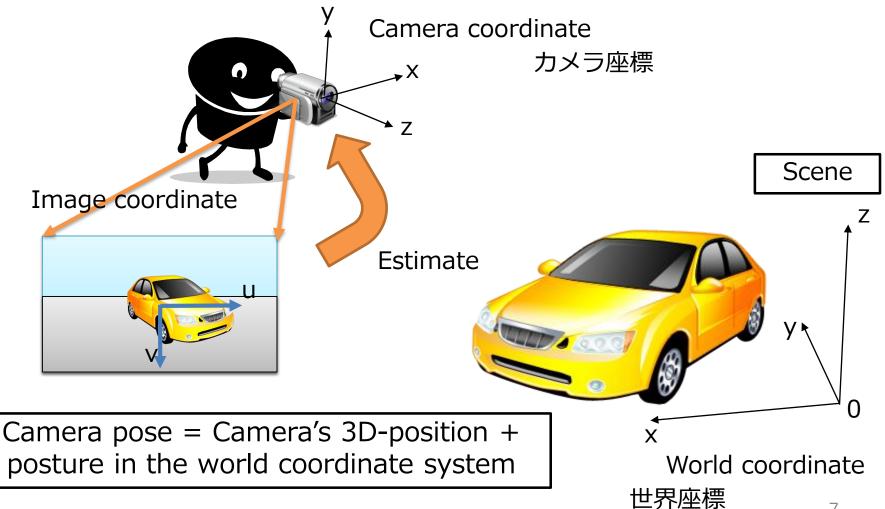


Today's topics

- What is camera pose?
- Coordinate system and transformation
- Projection from 3D to 2D
 - Intrinsic parameters
 - Extrinsic parameters
- Camera pose estimation
 - Linear algorithm
 - Iterative algorithm

What is camera pose?

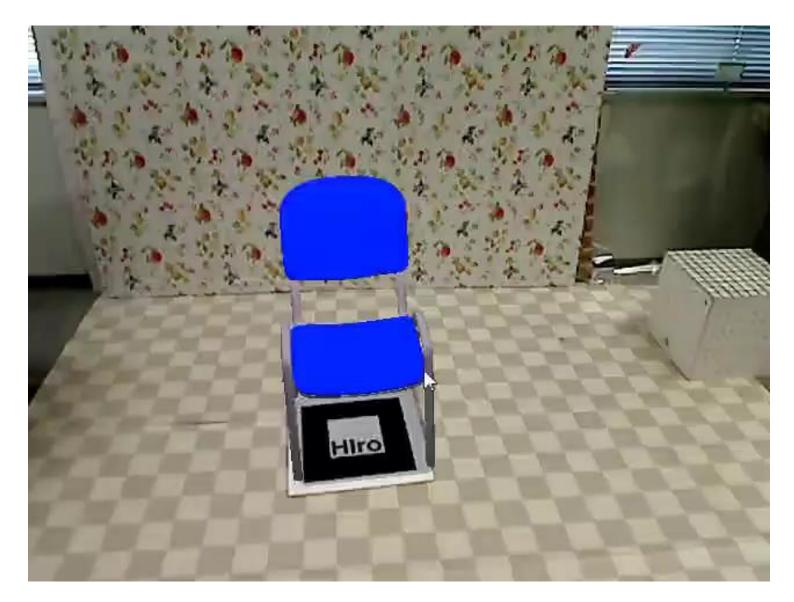
What is 'camera pose' ?



Camera pose estimation (カメラ位置姿勢推定) • Given a single image, estimate the exact position of the photographer

Pose estimation

Applications of camera pose estimation - Marker based Augmented Reality -



Applications of camera pose estimation

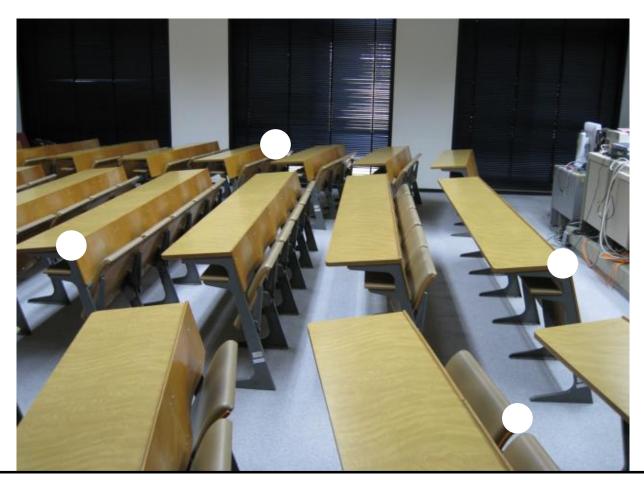
Image mosaic

Augmented reality

3D modeling

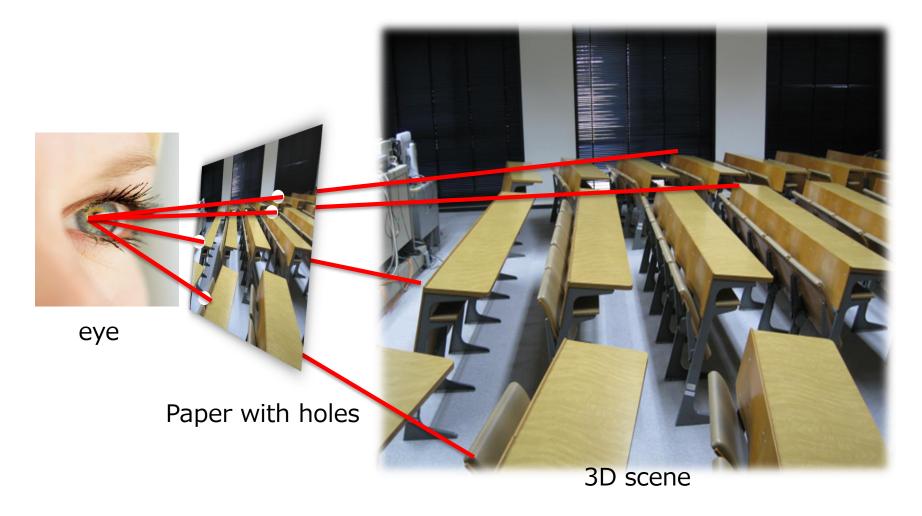
Free viewpoint image rendering

Small experiment: Find the camera pose for taking this picture



Mini-report (1) Write your idea. Hint: Why did I make some holes?

Idea for camera pose estimation



By aligning the positions of rays and holes, you can estimate camera pose from an image.

Camera Pose Estimation

	Structure (scene geometry)	Motion (camera geometry)	Measurements	
Pose Estimation	known	estimate	3D to 2D correspondences	
Triangulation	estimate	known	2D to 2D correspondences	
Reconstruction	estimate	estimate	2D to 2D correspondences	

Today's topics

- What is camera pose?
- Coordinate system and transformation
- Projection from 3D to 2D
 - Intrinsic parameters
 - Extrinsic parameters
- Camera pose estimation
 - Linear algorithm
 - Iterative algorithm

How can you express the position and posture?

Q. Where is he?

Which direction is he looking?

A. He is ...

Position:

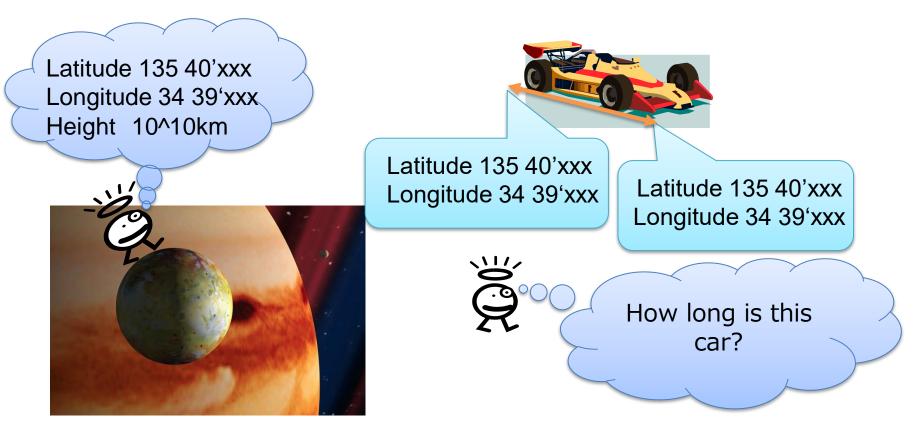
- •He is in Aomori.
- •He is at the place 600km north from Tokyo.
- •He is at the position of latitude 135 40'xxx, longitude 34 39'xxx.

Posture:

- •He is looking east direction.
- •He is looking the pacific.
- •He is looking moon.

Common basis to specify the camera pose is necessary.

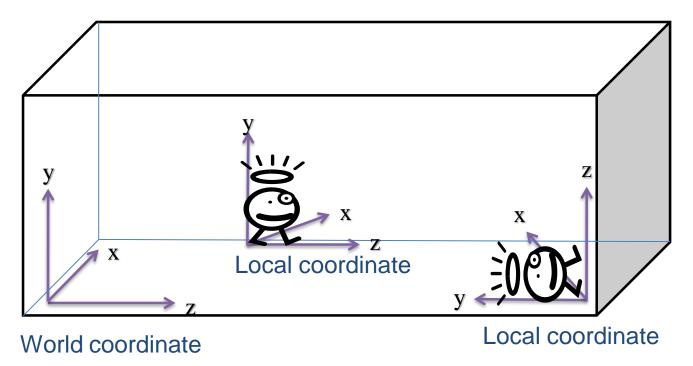
Is GPS coordinate system the best?



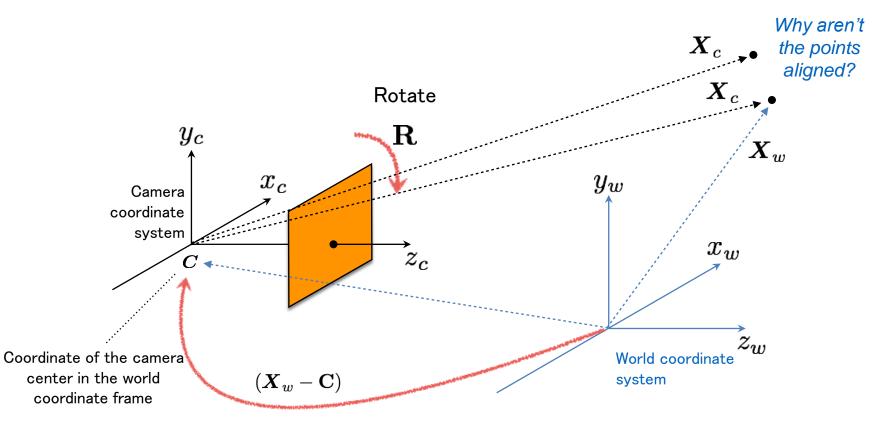
Absolute and relative position / posture

Absolute position / posture: Position and posture that are defined in some fixed and common **world** coordinate system.

Relative position / posture: Position and posture that are defined in **local** coordinate system.



How to convert coordinate?



Translate

$$\boldsymbol{X}_{c} = \mathbf{R} \left(\boldsymbol{X}_{w} - \mathbf{C} \right)$$

Rotate

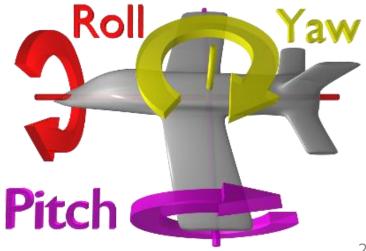
What are R and C? 3D rigid transformation

Rotation parameters

• Roll, Pitch, Yaw: Rotate along X, Y, Z.

 $\mathbf{R} = Z(\alpha)Y(\beta)X(\gamma)$

$$= \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \beta & 0 & \sin \beta\\ 0 & 1 & 0\\ -\sin \beta & 0 & \cos \beta \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \gamma & -\sin \gamma\\ 0 & \sin \gamma & \cos \gamma \end{pmatrix}$$



Homogeneous coordinate (同次座標系·斉次座標系)

Heterogeneous (非同次)

$$X_{c} = \mathbf{R}(X_{w} - \mathbf{C})$$

$$X' = R_{2}(R_{1}(X - C_{1}) - C_{2})$$
Homogeneous (同次)
$$\begin{bmatrix} X_{c} \\ Y_{c} \\ Z_{c} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{RC} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix}$$

$$(x_{c}, y_{c}, z_{c})$$

$$(x_{w}, y_{w}, z_{w})$$

Transformation matrix *M* (Extrinsic parameter)

$$X' = M_2 M_1 X$$

many notations

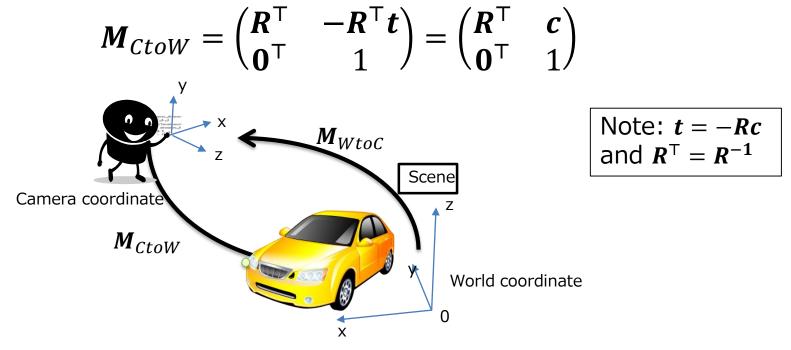
$$\boldsymbol{M} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0}^{\mathsf{T}} & 1 \end{pmatrix} \text{ or } [\boldsymbol{R}|\boldsymbol{t}] (3x4)$$

Important characteristics of rigid transform

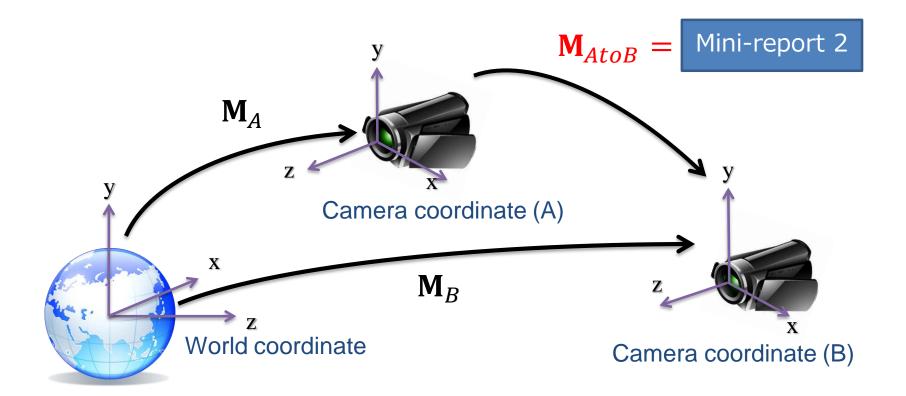
• Inverse transform of M_{WtoC} can be computed by inverse matrix.

$$\boldsymbol{M}_{CtoW} = \boldsymbol{M}_{WtoC}^{-1}$$

• Since inverse of rotation matrix R^{-1} is coincide with R^{T} , M_{CtoW} can be computed as follows.



Relationship between coordinates



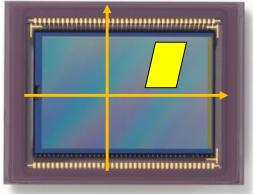
- Inverse transformation can be easily computed by inverse matrix.
- Transformation can be cascaded by simply multiplying matrixes.

Today's topics

- What is camera pose?
- Coordinate system and transformation
- Projection from 3D to 2D
 - Intrinsic parameters
 - Extrinsic parameters
- Camera pose estimation
 - Linear algorithm
 - Iterative algorithm

Intrinsic and Extrinsic parameters

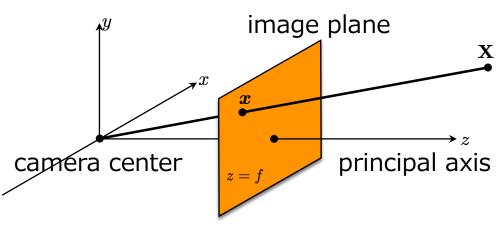
- Intrinsic parameters (内部パラメータ)
 - depend only on camera characteristics
 - 5 intrinsic parameters
 - focal length fx, fy in pixel unit
 - principal point cx, cy
 - skew s (usually s=0)



- Extrinsic parameters (外部パラメータ)
 - depend only on camera pose
 - rotation matrix **R**, translation vector **t**

Things to remember

The (rearranged) pinhole camera



3D to 2D mapping using projection matrix

$$\boldsymbol{x} = \boldsymbol{M}\boldsymbol{X}$$
$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} f_x & s & c_x & 0 \\ 0 & f_y & c_y & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_c \\ y_c \\ z_c \\ 1 \end{pmatrix}$$

Image coord.

Projection matrix (Intrinsic parameter) Camera local coord.

Projection matrix decomposition

We can decompose the camera matrix like this:

$$M = \begin{pmatrix} f_x & 0 & c_x & 0 \\ 0 & f_y & c_y & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
This means camera and world coordinates are the same.
3x3 intrinsic 3x4 extrinsic 内部パラメータ 外部パラメータ

What if world and camera coordinate systems are different?

$$\boldsymbol{M} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{pmatrix} = \begin{pmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} [\boldsymbol{R} \mid \boldsymbol{t}]$$

3x3 intrinsic 3x4 extrinsic (camera pose)

Recap

• The camera matrix relates what two quantities?

$$x = MX$$

Mini-report 3

• The camera matrix *M* can be decomposed into?

Mini-report 5: What is K, and what is [R|t]

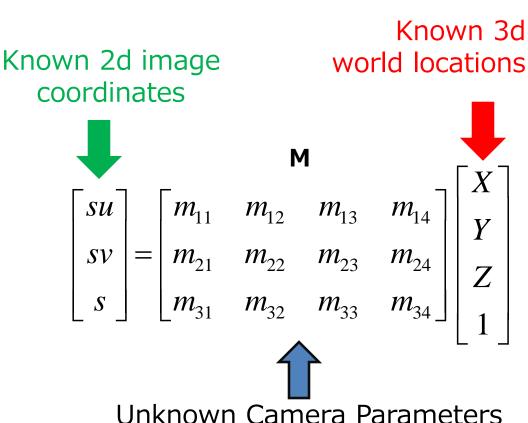
Today's topics

- What is camera pose?
- Coordinate system and transformation
- Projection from 3D to 2D
 - Intrinsic parameters
 - Extrinsic parameters
- Camera pose estimation
 - Linear algorithm

Calibrating the Camera

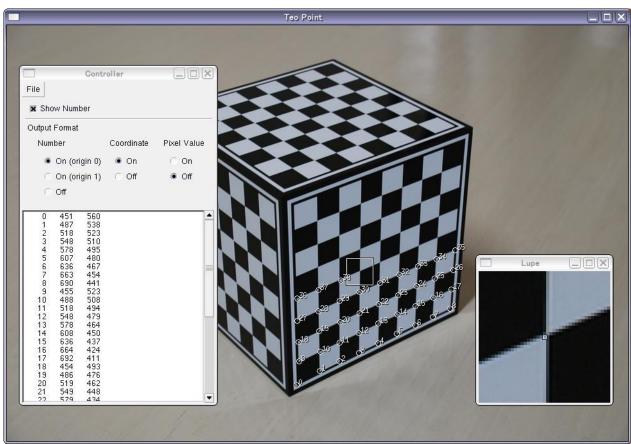
Use an scene with known geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)



Camera and image positions

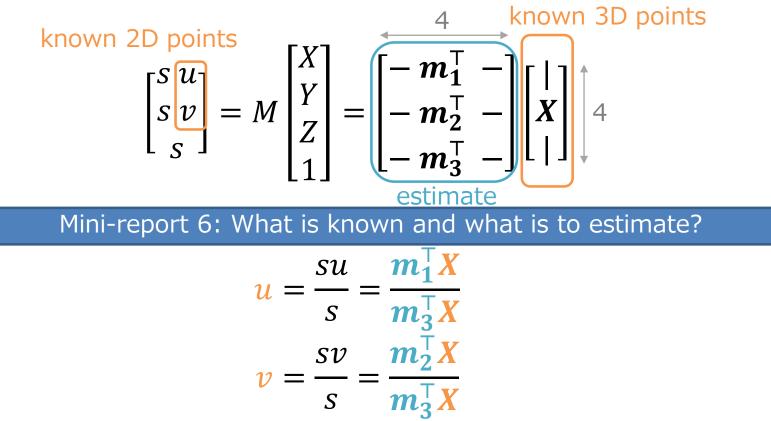
 A calibration rig is observed by a camera and the image positions have been found manually or automatically.



Large scale calibration

- Calibration object
 - Marker for distant camera
 - Reflector for TotalStation

Algebraic manipulation



Manipulation to make it linear

٠

$$m_1^{\mathsf{T}} \mathbf{X} - m_3^{\mathsf{T}} \mathbf{X} u = 0$$
$$m_2^{\mathsf{T}} \mathbf{X} - m_3^{\mathsf{T}} \mathbf{X} v = 0$$

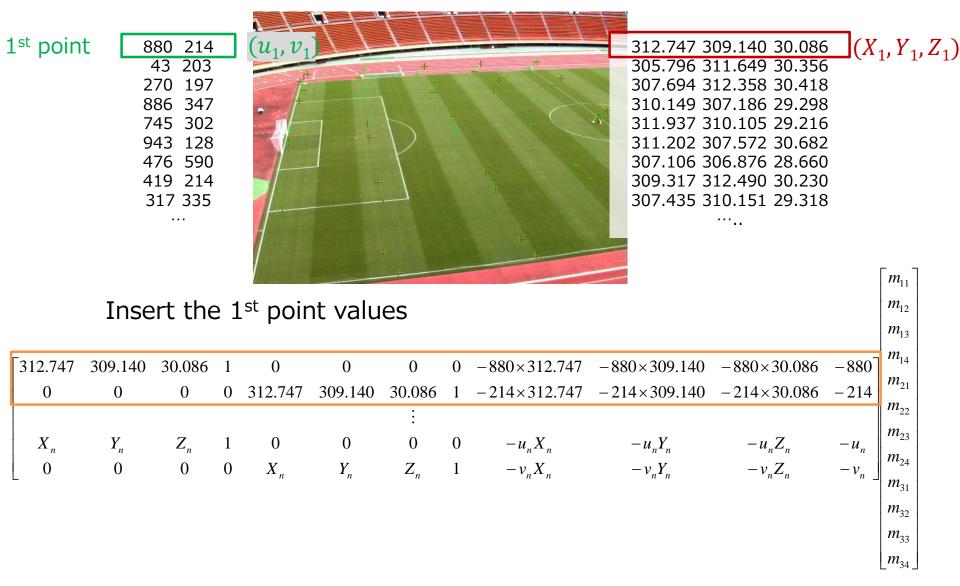
Algebraic manipulation cont'd

$$\boldsymbol{m}_1^{\mathsf{T}}\boldsymbol{X} - \boldsymbol{m}_3^{\mathsf{T}}\boldsymbol{X}\boldsymbol{u} = 0 \qquad \boldsymbol{m}_2^{\mathsf{T}}\boldsymbol{X} - \boldsymbol{m}_3^{\mathsf{T}}\boldsymbol{X}\boldsymbol{v} = 0$$

- In matrix form $\begin{array}{cccc}
 12 \\
 \begin{bmatrix}
 X^{\mathsf{T}} & \mathbf{0} & -\mathbf{u}X^{\mathsf{T}} \\
 \mathbf{0} & X^{\mathsf{T}} & -\mathbf{v}X^{\mathsf{T}}
 \end{bmatrix}
 \begin{bmatrix}
 m_1 \\
 m_2 \\
 m_3
 \end{bmatrix}
 \begin{bmatrix}
 12 \\
 = 0
 \end{bmatrix}$
- For N points... $\begin{array}{c}
 12 \\
 X_{1}^{\mathsf{T}} \quad \mathbf{0} \quad -u_{1}X_{1}^{\mathsf{T}} \\
 \mathbf{0} \quad X_{1}^{\mathsf{T}} \quad -v_{1}X_{1}^{\mathsf{T}} \\
 \vdots \quad \vdots \quad \vdots \\
 X_{N}^{\mathsf{T}} \quad \mathbf{0} \quad -u_{N}X_{N}^{\mathsf{T}} \\
 \mathbf{0} \quad X_{N}^{\mathsf{T}} \quad -v_{N}X_{N}^{\mathsf{T}}
 \end{array}$
- Unknowns are 12, so more than 6 points are required to solve.

Known 2d image coordinates

Known 3d world locations



Known 2d image coordinates

Known 3d world locations

 m_{12}

 m_{33} m_{34}

Insert the 2nd point values, and continue to the N-th point.

[3	312.747	309.140	30.086	1	0	0	0	0	-880×312.747	-880×309.140	-880×30.086	-880]	<i>m</i> ₁₃
	0	0	0	0	312.747	309.140	30.086	1	-214×312.747	-214×309.140	-214×30.086	-214	m_{14}
	305.796	311.649	30.356	1	0	0	0	0	-43×305.796	-43×311.649	-43×30.356	-43	<i>m</i> ₂₁
	0	0	0	0	305.796	311.649	30.356	1	-203×305.796	-203×311.649	-43×30.356	-203	m ₂₂
							•						m ₂₃
	X_n	Y_n	Z_n	1 _{<i>n</i>}	0	0	0	0	$-u_nX_n$	$-u_nY_n$	$-u_n Z_n$	$-u_n$	m ₂₄
	0	0	0	0	X_n	Y_n	Z_n	1	$-v_n X_n$	$-v_nY_n$	$-v_n Z_n$	$-v_n$	m ₃₁
													m_{32}

Solve the equation by least squares

For N points...
$$12$$

$$2N \begin{bmatrix} X_{1}^{T} & 0 & -u_{1}X_{1}^{T} \\ 0 & X_{1}^{T} & -v_{1}X_{1}^{T} \\ \vdots & \vdots & \vdots \\ X_{N}^{T} & 0 & -u_{N}X_{N}^{T} \\ 0 & X_{N}^{T} & -v_{N}X_{N}^{T} \end{bmatrix} \begin{bmatrix} m_{1} \\ m_{2} \\ m_{3} \end{bmatrix} = 0$$

$$Mini-report 7: what is the size of the matrix?$$

How to solve
$$Ax = 0$$
?

Linear and Non-linear solutions

• Least squares problem

Ax = 0 where $x \neq 0$ A is a tall matrix. (縦長行列)

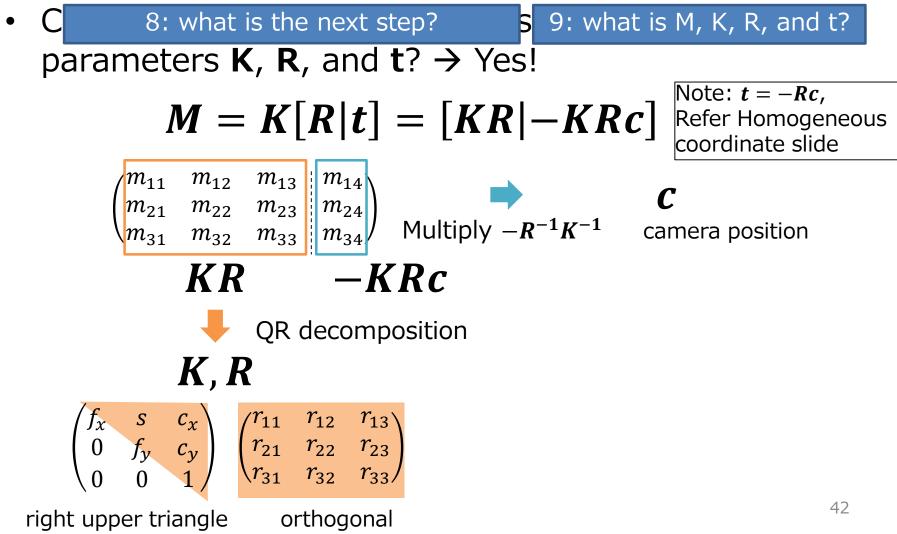
Optimization form

 $\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \|\mathbf{A}\boldsymbol{x}\|^2$ subject to $\|\boldsymbol{x}\|^2 = 1$

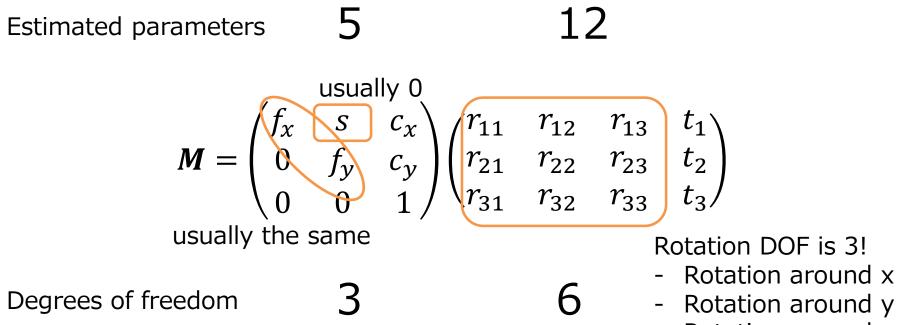
- Closed-form solution
 - Singular value decomposition (SVD, 特異値分解) Solution **x** is the column of **V** corresponding to smallest singular value of $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$
 - Eigen value decomposition (固有値分解) Equivalently, solution **x** is the Eigenvector **A** ^T **A**

corresponding to smallest Eigenvalue of

Matrix decomposition M = K[R|t]



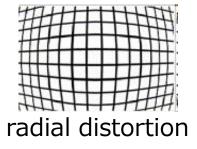
Estimated parameters are too much?



- Rotation around z

Calibration with linear method

- Advantages
 - Easy to formulate and solve
 - Provides initialization for non-linear methods
- Disadvantages
 - Doesn't directly give you camera parameters
 - Doesn't model radial distortion
 - Can't impose constraints, such as known focal length
- Non-linear methods are preferred
 - Define error as difference between projected points and measured points
 - Minimize error using Newton's method or other non-linear optimization



Today's topics revisit

- What is camera pose?
- Coordinate system and transformation
- Projection from 3D to 2D
 - Intrinsic parameters
 - Extrinsic parameters
- Camera pose estimation
 - Linear algorithm
 - Iterative algorithm

Today's mini-report 10

How to compute the position of light in the image coordinate of a camera? **Assumption:**

- Light is placed at p in the coordinate system A.
- Mr. A is staying at a in the world coordinate system, and is inclined from the world (rotation matrix R_a).
- A camera is put on c, whose rotation matrix is R_c , and intrinsic parameter is K.

